
Group decision
This decision merges data in coincidence to create events from different channels. The merged data
are included in a GROUP data (type 10) which represents an event.

This module is divided in two panels : Trigger & Merger.

• Trigger panel defines conditions that do trigger a new Group,

• Merger panel defines how the group is built.

Trigger panel

Data coincidences are expressed in the trigger panel with combinations of labels (data id) in a time
window. Those labels named Triggers are combined in a Trigger Expression which can take two
forms : Boolean or Multiplicity. A Trigger Window is any time window started by one of the
Triggers.

 fig 1: Group decision with « Boolean expression » trigger

With Boolean Trigger selected (fig.1), trigger occurs when the presence of data in the Trigger
Window evaluate the Boolean expression to True. The boolean expression is composed with labels,
parenthesis and boolean operators [and - or - not]. Each label is evaluated to True when a
corresponding data is present in the window. In the given example, grouping is triggered when at
least two data labelled #4 and #5 are seen in a window of 50ns without any #6.

 fig 2: Group decision with « Multiplicity » trigger

With Multiplicity Trigger selected (fig.2), trigger occurs when at least Multiplicity of different data
from the list Triggers is seen in the Trigger Window. In the given example, grouping is triggered
when 2 labels from [#4, #5, #6] are present in a 50ns interval.

fig 3: Inhibited Group decision

The check button Enabled activates or inhibits the decision. When inhibited (fig.3), the decision is
transparent to the data flow and doesn't affect it.

Merger panel

For each trigger, the Merger creates a new Group data composed with all Groupable Data present
in the Grouping Window. A Groupable Data is a data which label is in Triggers or Followers, and
the Grouping Window is the conjunction of Before T.Win, Trigger Window and After T.Win.

In the examples given, a resulting group data will have the following caracteritics :

• type = 10,

• label = 99,

• clock = beginning of the « Trigger Window »,

• load = list of all data from (4, 5, 6, 7, 8, 9) seen in [clock-70ns ; clock+50+80ns]

Parameter lossless is used to keep all the data in the flow. If this parameter isn't selected, each
groupable data outside a group will be removed from the flow.

Lossless or not, the decision only affects the groupable data, and keeps the others unchanged.

Reading stored data
An acquisition is stored in two files : the setup parameters are stored in an ascii file (.setup) and the
data in a little endian binary file (.fast).

Data are sorted in function of time, this format is optimized for time stamped data flow and online
treatments.

Any data is composed of five fields :

• type_alias type of the data,

• label data id,

• clock time associated with that data,

• load_size size in octet of the load part,

• load specific part of the data, depending of its type_alias.

Stored data can be replayed with RHB (REF : how to RHB a file) or processed by a C program
using fasterac library.

The package fasterac is available for Ubuntu LTS at the following repository :

« deb http://faster.in2p3.fr/distribution/ubuntu/ lucid main »

For other GNU systems, it can be installed from the archive fasterac-X.Y.tar.gz with :

> wget http://faster.in2p3.fr/fasterac-X.Y.tar.gz

> tar xvzf fasterac-X.Y.tar.gz

> cd fasterac-X.Y

> ./configure ; make ; make install

(this example is given with the « lucid » LTS and the X.Y version of fasterac)

This package contains the program disfast, the library fasterac and example codes.

• disfast is used to display and to check the content of « .fast » file in a console (man disfast),

• fasterac is a C library for handling Faster files and data (man fasterac),

• example codes (/usr/share/fasterac/examples) show how to read a data file, to handle data
types, to make a basic data treatement, or to create a « root tree » from a Faster file.

The simple example below shows the different aspects of handling data from a file.

It consists in displaying the label, the time and the ratio of the first two charges of every QDC data
(having at least two charges).

1 #include <stdio.h>
2 // Include the specifications of
3 #include "fasterac/fasterac.h" // - the fasterac library,
4 #include "fasterac/qdc_caras.h" // - the QDC data formats.
5
6 int main (int argc, char** argv) {

http://faster.in2p3.fr/fasterac-1.0.tar.gz

7
8 faster_file_reader_p reader; // Declare a data reader (from fasterac.h),
9 faster_data_p data; // a faster data,
10 unsigned short label; // the label of a data,
11 double clock; // the clock in seconds of a data.
12 double ratio; //
13 qdc_t_x4 qdc; // Declare a QDC_TDC with 4 charges (from qdc_cara.h),
14 // this type fits all qdc types to get two charges.
15
16 reader = faster_file_reader_open (argv[1]); // Open the file given in argument (ie "myfile.fast").
17 while ((data = faster_file_reader_next (reader)) != NULL) // Get the next data till the end.
18 {
19 type = faster_data_type_alias (data); // Get the type of the current data.
20 if (type == QDC_X2_TYPE_ALIAS || //
21 type == QDC_X3_TYPE_ALIAS || //
22 type == QDC_X4_TYPE_ALIAS || //
23 type == QDC_TDC_X2_TYPE_ALIAS || // Those constants are defined in qdc_caras.h,
24 type == QDC_TDC_X3_TYPE_ALIAS || // there is all QDC containing at least two charges.
25 type == QDC_TDC_X4_TYPE_ALIAS || //
26 type == QDC_TOF_X2_TYPE_ALIAS || //
27 type == QDC_TOF_X3_TYPE_ALIAS || //
28 type == QDC_TOF_X4_TYPE_ALIAS) // If the current data is one of those QDC then ...
29 { //
30 label = faster_data_label (data); // get the label of that QDC data,
31 clock = faster_data_clock_sec (data) ; // get its time stamp in second,
32 faster_data_load (data, &qdc); // get ist specific part (the QDC part).
33 ratio = (double) qdc.q2 / qdc.q1; // Calculate the charge ratio q2/q1 of that QDC,
34 printf ("type=%d label=%d clock=%0.9f Q2/Q1=%f\n", type, label, clock, ratio);
35 } // and display all the infos.
36 } // Here is the end of file,
37 faster_file_reader_close (reader); // close it.
38
39 return 0;
40 }

Line 3 includes the specifications of the fasterac library (/usr/include/fasterac/fasterac.h). The
library (man fasterac) proposes types and functions to read data files (faster_file_*) and to handle
faster data (faster_data_*). Almost every lines of that example are referring the library (lines 3, 8 to
11, 16, 17, 19, 30 to 32, and 37). All data are manipulated without having to know the specific part
of each. The program works on any faster file containing any type of data, and it only focuses on
QDCs.

QDC types are involved in the lines 4, 13, 20 to 28, and 33. Line 4 includes the specifications of
QDC data formats (/usr/include/fasterac/qdc_caras.h). The header file specifies constants defining
QDC types, data formats and functions.

This example shows how to manipulate any data in a generic way with fasterac, and how to access
the specific parts of data when needed.

To know how to handle those specific parts, refer to the considered header file (ie qdc_caras.h) and
the demo program given in example codes :

/usr/share/fasterac/examples/data_reader/reader_demo.c

This demo treats any type of data (QDCs, ADCs, Oscillo, Group, etc …), and access every
particular field without refering to the inner representation of data. Each data type is referenced in
that code by a « switch case » showing how to access each field of the type.

Here is the case of a « one charge QDC » which contains two fieds q1 and q1_satured :

… //

#include « fasterac/qdc_caras.h » // QDC specifications

… //

qdc_x1 q; // a one charge qdc declaration

… //

switch (faster_data_type_alias (data)) { // switch on the type of the current data

 … //

 case QDC_X1_TYPE_ALIAS : // case of a one charge QDC

 faster_data_load (data, &q); // get the specific part of the data

 printf (" QDC_X1 : q1=%d", q.q1); // direct access to the q1 field

 if (q.q1_satured) printf (" satured : q1"); // direct access to the q1_satured field

 printf ("\n"); //

 break; // no need to know the low level format

 … //

} //

… //

